Module 4: The Neurobiology of Trauma and Sexual Assault

Time Required
2 hours, 5 minutes

Purpose
This module introduces the basic elements of neurobiology and the parts of the brain affected by traumatic situations such as sexual assault. Participants also learn about types of drastic survival reflexes and the relationship between assault and memory.

Lessons
1. Brain Circuitry (45 minutes)
2. Reactions in Traumatic Situations (20 minutes)
3. Drastic Survival Reflexes During Sexual Assault (30 minutes)
4. Roles of Brain Circuitries in Trauma, Memory, and Healing (30 minutes)

Learning Objectives
By the end of this module, participants will be able to:

- Describe the components of the brain related to trauma.
- Explain common ways the brain is affected during and after sexual assault.
- Recognize common ways a traumatic experience may affect a victim’s behavior.
- Assist victims in understanding the neurobiology of trauma, when appropriate.

Instructor Worksheet
- Worksheet 4.1, Response Scenarios Case Studies—With Answers
Participant Worksheets

- Worksheet 4.1, Response Scenarios Case Studies
- Worksheet 4.2, How Would You Respond?

Equipment and Materials

No special equipment or materials are required.

Preparation

No special preparation is required.
Show Visual 4-1.

Introduce the module.

Show Visual 4-2.

Review the learning objectives for this module.

By the end of this module, participants will be able to:

- Describe the components of the brain related to trauma.
- Explain common ways the brain is affected during and after sexual assault.
- Recognize common ways a traumatic experience may affect a victim’s behavior.
- Assist victims in understanding the neurobiology of trauma, when appropriate.

1. Brain Circuitry (45 minutes)

Show Visual 4-3.

Effects of Trauma on the Brain

Sexual violence such as rape and sexual assault is almost always traumatic for victims. The effects of trauma on the brain can be devastating. Most of us do not really understand what happens in the brain when an individual has been the victim of trauma, such as sexual assault.

EMPHASIZE THIS PARAGRAPH: In this module, we will present an overview of what happens in the brain in a trauma situation. The brain is a truly complex organ, far too complex to cover in detail in this training. You will not need to memorize brain structures or processes. You will, however, be introduced to some basic information about brain circuitries and structures and how they come into play when a traumatic experience occurs.

Show Visual 4-4.
Disclaimer

Paraphrase:

Some mental health professionals, agencies, or entities may or may not agree with models of the neurobiology of trauma as scientific knowledge, models, and theories are rarely unanimously accepted.

Show Visual 4-5.

Module Overview

Paraphrase:

In this module, we will cover several areas of the brain and its circuitry to give you an overview of neurobiology and trauma. As a victim service provider, you should understand some of the basics of how trauma can affect the emotions and behavior of victims of crime.

In particular, we will discuss:

- The brain and its basic functions, as related to the neurobiology of trauma.
- The prefrontal cortex of the brain—one very important brain region that we will keep revisiting.
- Key circuitries in the brain affected by trauma.
- Emotional and brain responses when confronted with a traumatic situation.
- Traumatic events and memory.
- How victim service providers can use their knowledge of neurobiology to improve their assistance to crime victims.

Show Visual 4-6.

The Brain’s Basic Functions

Paraphrase:

These are the basic functions of the brain, as they are related to the neurobiology of trauma:

- The **brain stem**, which controls basic life functions and secretes adrenalin/epinephrine.
- The **medulla oblongata**, which controls breathing, heart rate, and blood pressure.
- The **pons**, which controls motor control and sensory analysis.
The **midbrain**, which controls vision, hearing, and eye and body movement.

Show Visual 4-7.

The Limbic System

Paraphrase:

The **limbic system** is a complex set of structures that lies on both sides of the **thalamus**, just under the cerebrum. It includes the **hypothalamus**, the **hippocampus**, the **amygdala**, and several other nearby areas. It appears to be primarily responsible for our emotional life and has a lot to do with the formation of memories, controlling:

- Memory, emotion, and fear (amygdala—pronounced uh-MIG-dah-luh).
- All sensory information (thalamus).
- Homeostasis, emotion, thirst, hunger, circadian rhythms, and autonomic nervous system (hypothalamus).
- Conversion of short-term memory to more permanent memory, and the recall of special relationships in the world about us (hippocampus).

Show Visual 4-8.

The Cerebellum and Cerebrum

Paraphrase:

The **cerebellum** is associated with regulation and coordination of movement, posture, and balance, while the **cerebrum** is associated with:

- Reasoning, planning, parts of speech, movement, emotions, and problem solving (**frontal lobe**).
- Movement, orientation, recognition, perception of stimuli (**parietal lobe**).
- Visual processing (**occipital lobe**).

Show Visual 4-9.
The Prefrontal Cortex

Paraphrase:

The **prefrontal cortex** is one of the most richly connected regions of the cerebrum. The area in the slide covered by the yellow oval is called the prefrontal cortex. This part of our brain allows us to control, or at least guide, what happens in evolutionarily older brain regions, especially the parts of the brain responsible for emotions, fear, and stress.

Show Visual 4-10.

Paraphrase:

The prefrontal cortex is the part of the brain that makes us human.

The prefrontal cortex helps us hold thoughts and memories in mind. It also helps us manage our emotions and reflect on our behavior.

The prefrontal cortex carries out many important functions in situations that are not traumatic or extremely stressful.

It permits higher functioning and allows us to control—or at least to manage—what happens in other brain regions, such as the limbic system, associated with the formation of memories.

The prefrontal cortex can directly and indirectly influence the amygdala, hypothalamus, and other brain regions involved in emotions, stress reactions, and reflexive and impulsive behaviors.

Under normal conditions, the prefrontal cortex allows us to focus our attention where we choose, and do what we choose—consistent with our goals and values—and to do so deliberately.

It allows us to do things that we can be mostly conscious of, like reflecting on our emotional reactions or deliberately directing our attention inward, as well as outward.

However, the prefrontal cortex can become impaired or even shut down in traumatic situations like sexual assault.

We can say that the prefrontal cortex is the center of executive functions in the brain. Executive function describes the activity of a system that manages other cognitive systems, in much the way an executive of a company would. In this sense, the prefrontal cortex is involved in managing complex processes like reason, logic, problem solving, planning, and memory. It is thought that, through the integration of these multiple processes, the prefrontal cortex plays a significant part in directing attention, developing and pursuing goals, and inhibiting counterproductive impulses.

The prefrontal cortex contributes more than any other part of the brain to making us who we are as individuals. If you took away our prefrontal cortex, we would be ruled by our desires and impulses, lacking an ability to plan for the future or think about the consequences of our actions.
Fear Circuitry

Paraphrase:

The brain is made up of many circuitries—connected brain areas that work together to perform specific tasks. Some areas may be far away from each other in the brain, but they are connected by fibers that send information in one or both directions.

Scientists know much about brain regions and how they interact with each other, both to produce fear and to regulate it. The amygdala is an important part of the brain and the fear circuitry. We will talk more about the amygdala later.

- The fear circuitry plays a huge role in trauma and posttraumatic stress, as in the case of most victims of sexual assault.
- Fear is located in multiple brain areas, not just one brain area.
- The circuitry of fear operates automatically and mostly outside of awareness. Our brains can detect a reminder of a trauma and generate an emotional response and fear behaviors before we know what has happened—and sometimes without us even knowing that our response was triggered by a trauma reminder. For example, the perpetrator of a sexual assault may have worn a yellow sweater during the attack, creating fear in the victim whenever she sees anyone wearing a yellow sweater. She may not even know what caused the fear.

Seeking Circuitry

Paraphrase:

Although most trainings on the neurobiology of trauma focus on fear, the brain circuitry of seeking is extremely important too.

Whenever there is something we fear and want to avoid, we also seek some kind of escape. Often, it is a quick fix that does not really solve our problems.

This is why you may have encountered victims of sexual assault who have substance abuse problems. Addictions are very common in traumatized people.

When we sense fear, anxiety, sadness, or any unwanted experiences, we want to avoid whatever is threatening. Our brains seek escape.

Seeking, in this sense, does not necessarily refer to craving or attachment, just escape.
As with the fear circuitry, elements of seeking circuitry are not located in just one brain area. Again, scientists know much about the brain regions involved and how they interact with each other, both to produce seeking and to regulate it.

The circuitry of seeking operates automatically and mostly outside of awareness. Our brains can respond to an unwanted feeling or experience and generate seeking behaviors, including addictive ones, sometimes without us realizing we have developed an addictive habit.

At the same time, assault victims, no matter how badly they have been harmed, still seek to uphold their values and goals, even if their suffering and symptoms make it difficult.

This upholding of values and goals is something very important about the brain’s seeking circuitry that is often overlooked.

Not only does it seek addictive escapes, but it also seeks the very best in life and human nature. Everything that we seek—whether it’s alcohol, drugs, sex, money, praise, promotions, or upholding our highest values and goals—involves the brain’s seeking circuitry.

If people strive to be the best version of themselves and to achieve their goals, but they cannot (including due to the impacts of trauma), they become demoralized.

For example, for those in the military, the values of the military and the ideal of being a “good soldier” are extremely important.

Consider a mother or father for whom being a good parent is a cherished value. Imagine that posttraumatic stress disorder symptoms are getting in the way of their ability to do their job well or to parent effectively.

Whatever our values, we can’t help but continually ask ourselves—and even judge ourselves—based on how close or far we are from our ideals and goals, and whether we feel like we’re moving toward or away from them.

When the answers are “far away” or “moving away” from our deepest values, then we can become discouraged, demoralized, and depressed. This is something with which many traumatized people struggle.

Satisfaction Circuitry

Paraphrase:

Another circuitry relates to satisfaction. It overlaps and interacts with the seeking circuitry. The satisfaction circuitry:

- Produces the feeling of satisfaction when we get what we seek.
Is central to feeling:

- Soothed and safe in one’s body.
- Connected to other people.
- Accepting of difficult experiences (not resigned).
- Not surprisingly, given what most people know about opiate drugs as powerful pain relievers, as well as the “blissed out” high people get from heroin—a powerful synthetic opiate—this circuitry involves opioid chemicals.

In this slide of the satisfaction circuitry, the purple dots correspond to places where opioid receptors associated with satisfaction are found in the brain.

It is difficult to study opioids in the brain, so the satisfaction circuitry is not as well understood as the seeking circuitry—however, its existence is well established and new research continues to be done.

Again, this circuitry gives us the feeling of satisfaction that comes with getting what we seek—at least when it is actually satisfying.

It also is critical to feelings of connection between parents and children, and feelings of satisfaction and connection between people in general.

It is central to experiences of feeling soothed and safe in our bodies, which are so important for healing from trauma.

Show Visual 4-14.

Embodiment Circuitry

Paraphrase:

The final circuitry we will discuss is called the embodiment circuitry. The more common term in neuroscience is “interoceptive,” which, broadly defined, refers to the process of receiving, accessing, and appraising signals originating in our bodies, and what it feels like to be in our bodies (Hopper 2016).

It includes an area called the insular cortex, or insula, which is beneath other cortical areas. This is an extremely important brain region.

The insular cortex gets sensory data from all body systems. If we direct our attention to the feeling of what is happening in our body, the insular cortex is the region that can pass that information on to our prefrontal cortex, where we can notice, reflect upon, and come to understand and accept what is happening in our body.
Consequently, this circuitry is a key to healing from trauma, depression, addiction, and many other problems.

The insula receives information about what is happening in the body, including when people are experiencing emotions.

- It allows us to know what it feels like to be in our body, moment to moment.
- It also can help survivors heal from trauma, depression, addiction, and many other problems (covered later in the training).
- The insula lets us be an embodied self—that is, to experience ourselves as a self in a body, and for our subjective experience to be grounded in our bodily sensations.
 - This is different than being “lost in our head,” overly focused on thoughts but cut off from our body experiences; and different from experiencing our body as an *object* that looks good or bad, that does what we want or doesn’t, or that we try to change—by working out, for example.
- The embodiment circuitry can come into play when the victim of a sexual assault has a drastic survival reflex during the attack.
- Most traumatized people, even though their brain and body are having intense fear and anxiety reactions, are not paying attention to their bodies or doing things to calm and soothe them. Instead, they have confusing thoughts about what the trauma means for them and their life, and what the effects, including those reactions, mean in terms of the kind of person they are.

In short—for understandable reasons we’ll discuss later—most traumatized people are not making good use of the insula to help themselves heal.

Ask: Why do you think it is necessary for victim service providers to understand these brain circuitries? **Allow** for several responses.

Possible response: When someone is a victim of sexual assault, the fear circuitry is dominant. Knowing about this circuitry can help victim service providers understand how a victim might have felt during an assault; however, other brain circuitries are instrumental in healing from the trauma, like the seeking and satisfaction circuitries.

Although you do not need to be an expert in neurobiology, you’ll be better able to understand what a victim needs after a sexual assault if you understand the circuitries of the brain that are related to seeking, satisfaction, and embodiment.
2. Reactions in Traumatic Situations (20 minutes)

Show Visual 4-15.

Traumatic Situations: Amygdala Control

Paraphrase:

The limbic system, which includes the amygdala, is one of the most important regions of the brain during a traumatic event.

Notice how the arrows from the amygdala to other brain regions are the largest arrows. That means the amygdala has the most central and powerful role in coordinating the brain’s responses during traumatic experiences.

We will talk more in a minute about how the amygdala determines what you pay attention to during a traumatic experience and how it triggers emotional reflexes and emotional habits in victims.

For now, the key points are that scientists know a lot about how the amygdala controls the brain in traumatic situations, that during traumatic experiences there is a loss of prefrontal cortex regulation, and most of the brain’s reactions happen automatically and outside our awareness.

Show Visual 4-16.

Paraphrase:

In traumatic (and high-stress) situations....

...the fear circuitry (especially the amygdala) causes several things to happen, including:

- Loss of prefrontal regulation: Chemicals from the brain stem impair (and may shut down) the prefrontal cortex.

- Bottom-up attention: Attention is automatically captured by anything perceived as dangerous or threatening, or as needed for survival.

- Emotional reflexes: Reflexes are automatic and include freeze, tonic immobility, flight, fight, or dissociative responses, as well as bodily responses like your heart pounding quickly.

Show Visual 4-17.
The Amygdala and Attention

Paraphrase:

Where did your attention go when this picture popped up?

It was your amygdala, not your prefrontal cortex, that automatically put your attention on the knife. That is what happens during a sexual assault. From the moment the fear kicks in, the fear circuitry, not the prefrontal cortex, is mostly or entirely determining where attention goes.

Attention can latch onto things that, in the moment, the fear circuitry determined were critical to survival. For example, during an attack, a victim might focus on a picture on the wall or a crack in the ceiling to escape from the awful sensations.

Why was the victim focused on something inconsequential?

Later, looking back on the assault, the victim and others—including loved ones, investigators, prosecutors, judges, and juries—might not understand why the victim was focused on something so mundane.

The point is we have no right to second-guess what the fear circuitry focused attention on in the midst of the assault, thus what is encoded into memory.

That is just how human brains are wired to respond to being attacked or assaulted, based on hundreds of millions of years of evolution in mammals and the species from which they evolved.

Ask: What happens when we encounter a dangerous situation and the amygdala and fear circuitry trigger survival reflexes in the body? Allow for several responses.

Show Visual 4-18.

Provide the correct responses if not mentioned by participants.

- Pupils dilate, let in more light, and sharpen vision.
- Heart beats faster and pumps more blood.
- Blood pressure increases.
- Breathing rate increases to supply the body with more oxygen.
- Increased blood flow is sent to muscles, away from internal organs.

All of this lets us do things we could not do under ordinary circumstances—so we can survive what we perceive as a life-threatening experience such as encountering a predator.

Show Visual 4-19.
Paraphrase:

These are the characteristics and neurobehavioral basis of the defense cascade, “a continuum of innate, hard-wired, automatically activated defensive behaviors” (Koslowska 2015) in response to threats:

- **Arousal:** muscles tense, breathing, and heart rate increase as the body prepares for action (Koslowska 2015).
- **Fight or flight:** active defense response for dealing with a threat (Koslowska 2015).
- **Freezing:** a fight-or-flight response put on hold (Koslowska 2015).
- **Dissociation:** disconnections of awareness from emotions and even sensations in one’s body (Koslowska 2015).
- **Tonic immobility:** inability to move or call out; shut down in the face of fear. A variation is collapsed immobility, with the loss of muscle tone and changes in consciousness. Tonic and collapsed immobility are “responses to inescapable threat or strategies of last resort” (Kozlowska 2015).
- **Quiescent (dormant) immobility:** after the threat or danger has passed, a state of quiescence that promotes rest and healing” (Koslowska 2015).

“**Fight or flight**” is misleading.

“Fight or flight” is misleading and gets in the way of understanding how human brains are wired to respond to being assaulted.

That phrase seems to indicate that if someone is “brave,” “a real man,” or “a true soldier,” he or she would react to assault by fighting back, and that only cowards try to escape—but that is simply not how our brains evolved or how they are wired.

We evolved to freeze first, then flee. Even if humans do fight when attacked by a predator, it is not because they want to win the fight; they just want to escape.

We evolved knowing that if we fight a big predator that has menacing jaws and sharp teeth or claws, we are going to lose. The same applies when the predator is human and carries a gun or knife or other threat.

Sometimes, an assault victim may fight back in a sustained way against a more powerful and/or armed perpetrator, but that is extremely unusual.

It is very important that sexual assault victims and those who work with them understand this, because victims often feel ashamed that they did not fight back. Even otherwise supportive family members and friends may not understand and may have incorrect expectations for how the victim should have responded—or how they would have responded had it happened to them.
Show Visual 4-20.

Freeze, Flight, or Fight—The Primary Purpose

Paraphrase:

The freeze reaction usually happens at the beginning of a trauma and is usually brief.

Freezing is a fight-or-flight response put on hold. Freezing occurs when the amygdala—a crucial structure in the brain’s fear circuitry—detects an attack and signals the brainstem to inhibit movement. It happens in a flash, automatically and beyond conscious control.

Signs of a freeze reaction in a victim include:

- Brief response, when the victim perceives danger.
- Being highly alert.
- Having a heightened attentional state that is receptive to a wide array of information in the external environment.
- Not moving, because that could provoke or worsen attack, and because that would absorb brain resources that initially need to be focused on assessing the situation.
- Readiness to burst suddenly into action.

Ask: All of us have been in situations where we froze. Many of these are not traumatic situations; they are simply frightening—being approached by a vicious dog, for example. Can anyone think of an example of a freeze response they would like to share?

Allow for several responses, then discuss or continue.

3. Drastic Survival Reflexes During Sexual Assault (30 minutes)

Show Visual 4-21.

Paraphrase:

During the initial freeze response or at any time during an assault, the prefrontal cortex will be affected, impairing rational thought processes.

It is the brain’s fear circuitry that may automatically determine that escape is impossible. The victim is attempting to escape and survive when there is no apparent (physical) escape.
Looking back later, the victim and others—that is, their prefrontal cortexes—may recognize that escape was possible (e.g., through an open door), but what matters is what the fear circuitry concluded at the time.

When escape is perceived as impossible, the fear circuitry can trigger some drastic “survival reflexes.” Victim service providers should be aware of these survival reflexes in victims because they can affect how the victim sees him or herself after the assault.

Show Visual 4-22.

Disassociation

Paraphrase:

One of these automatic survival reflexes over which the victim has no control is dissociation.

Dissociation involves disconnections of awareness from emotions and even sensations in one’s body. It includes experiences such as feeling like you are unreal or the situation is unreal, feeling like you’re in a fog or a movie, or feeling like you’re disconnected from your body.

The quotation is a from a research participant, describing her dissociative experience when reminded of an assault she experienced years before:

“It was silence, looking at her through a glass wall, so it couldn’t affect me, couldn’t touch me.”

There is currently little data on the biology of dissociation during trauma, although there are a few brain imaging studies on dissociative responses to trauma reminders, i.e., reminders of the trauma that generate an emotional response and fear behaviors.

There is, however, definitive evidence that dissociation involves altered functioning of the embodiment circuitry and/or disconnection between the embodiment circuitry and the prefrontal cortex.

This fits with many victims’ experiences of lacking awareness of bodily sensations of physical contact involved in the sexual assault and/or bodily sensations associated with emotions the assault is triggering.

Show Visual 4-23.

Paraphrase:

When a victim experiences dissociation during a traumatic event, he or she may feel:

- “Spaced out,” as if they were not part of what happened.
- Disconnected from their emotions and their body—as though in a dream or a fog, or watching a movie.

- “On autopilot,” such that the victim goes through the motions without feeling any sense of control or choice, and only later realizes that they did things they never consciously intended or decided to do. This can mean participating in sex acts, not because the victim choose to, let alone consented or wanted to, but because she or he was in a terrified dissociative state.

Dissociation has been reported in some cases of repeated sexual abuse in children, especially when the perpetrator is someone close to the child.

It can become a more habitual response that carries over to all kinds of stressful situations, including sexual assault in adulthood.

Even someone who had no prior history of child abuse may dissociate during a physical or sexual assault as an adult.

Dissociation, especially dissociative autopilot, can be a huge source of shame and confusion to victims. They may be upset with themselves for not resisting and even actively participating in unwanted and terrible sexual acts.

Loved ones, investigators, and others may misinterpret dissociative autopilot as consent and willing participation.

Perpetrators and defense attorneys may also point to such behavior as evidence that there was consent and no assault, when nothing could be further from the truth.

Show Visual 4-24.

Paraphrase:

Remember, it is critical for you to help victims who dissociated during an assault to understand that this is a brain-based, automatic, survival reflex.

Ask: Have you ever encountered a sexual assault victim who described feeling “spaced out,” “on autopilot,” or similar words during the attack? If so, did you understand that he or she may have been describing dissociation? Allow for several answers.

Show Visual 4-25.

Tonic Immobility

Paraphrase:

Another survival reflex is tonic immobility, a brain-based response that is over 300 million years old.
It is found in birds, sharks, and mammals, including humans. The chicken shown on the slide is in a state of tonic immobility, after being restrained by a person. See how rigid its legs and neck are? If someone were to hit its feet or head, they would barely move.

Tonic immobility is different from freezing, in which movement is possible but not engaged in while assessing the situation and avoiding an even more dangerous attack.

With tonic immobility, the victim is actually paralyzed, unable to move and unable to speak or cry out, even if he or she wants to.

Like dissociation, with which it may overlap, tonic immobility happens when escape is or appears impossible.

Tonic immobility is understood as an extreme version of “shutting down” in the face of overwhelming threat or trauma.

An estimated 10–50 percent of victims experience tonic immobility to some extent in both sexual and nonsexual assaults (Campbell 2012).

Show Visual 4-26.

Paraphrase:

The onset of tonic immobility is sudden, usually after a failed struggle; the immobility also terminates suddenly.

This reflex response can last from seconds to hours. It does not impair alertness or memory encoding.

Show Visual 4-27.

Paraphrase:

Tonic immobility can also overlap with dissociation, and may include:

- Trembling or shaking.
- Stiff, rigid muscles.
- Feeling cold.
- Feeling numb to pain.
- Fixed or unfocused staring or intermittent eye closure.

Show Visual 4-28.
Collapsed Immobility

Paraphrase:

Collapsed immobility is another reflex, but it is different from tonic immobility and dissociation. Collapsed immobility results from a massive input to the heart from the parasympathetic branch of the autonomic nervous system, which causes extreme decreases in heart rate and blood pressure. This in turn can cause faintness, sleepiness, or even loss of consciousness. Consistent with the name, collapsed immobility causes muscle tone to be lost; as a result, the body goes limp. If you were to pick up the possum in the slide picture, the body would be limp and floppy, not rigid like an animal in a state of tonic immobility (Kozlowska et al. 2015; Baldwin 2013).

Show Visual 4-29.

Paraphrase:

Collapsed immobility is often accompanied by the experience of mental defeat—feeling totally overwhelmed and helpless. It may be triggered by seeing blood, a skin puncture, a knife, or other sharp objects. Evidence suggests that collapsed immobility is more likely in those who faint while having blood drawn. Like blood phobia, the evidence suggests it is more likely to occur in women than in men. A significant percentage of animals also resort to tonic immobility or collapsed immobility when attacked by a predator. Collapsed immobility is not as common as tonic immobility, but it is not uncommon. Like tonic immobility, collapsed immobility can be a source of confusion and shame in victims, who look back at what happened and think they should have escaped or fought back. It can be disturbing to family members and friends, as well as investigators, prosecutors, judges, and juries. Their confusion can lead to doubt, blaming, and even shaming of victims.

So again, it is extremely important that sexual assault victims who have had these reactions during assault, and those who work with them, understand that these are normal, brain-based responses rooted in hundreds of millions of years of evolution; it is how human brains are wired (Kozlowska et al. 2015; Baldwin 2013).

Ask: Tonic immobility and collapsed immobility can be extremely frightening for the victim. Has anyone heard about either of these reactions from a victim, or seen these responses in an animal? Allow for several responses.

Show Visual 4-30.
Brain-Based “Counter-Intuitive Behaviors”

Paraphrase:

You and the victims you work with are often told by other people that a victim’s reported behaviors during the assault “don’t make sense.”

Here we have the four major responses that lead people—not only friends, family members, and partners, but police investigators, prosecutors, judges and juries—to doubt that the victim was actually sexually assaulted:

- Did not resist.
- Made no attempt to escape.
- Did not scream.
- Was an “active participant.”

Ask: What other responses have you heard? Allow for several responses.

Defense attorneys try to use these brain-based trauma responses to undermine the credibility of the victim by describing such responses as “evidence of consent.” Sadly, victims themselves often view these same responses as evidence that they were cowardly or weak in their response to the assault—however, these responses make perfect sense if you understand the neurobiology of trauma responses during an assault.

As an advocate who has learned that these are completely normal brain-based responses—responses studied by researchers and given names such as dissociation, tonic immobility, and collapsed immobility—you can help victims to understand and feel validated in their experiences.

You can teach victims that these are normal, brain-based responses well understood by people who research and work with sexual assault victims.

Understanding these brain-based responses may have huge positive effects on victims and their experiences with friends, family members, law enforcement, and the legal system.

Show Visual 4-31.

Brains During Most Sexual Assaults

Paraphrase:

Look at the differences in response and brain activity between most perpetrators and most sexual assault victims, who experience intense distress and fear during the assault.
In the typical perpetrator, the prefrontal cortex is in control—definitely more in control than the emotional brain, even if the perpetrator is acting compulsively.

So the perpetrator is thinking clearly and able to carry out a planned sexual assault and to use their prefrontal cortex to direct and modify assaultive behaviors that are practiced, even habitual.

For the victim, the fear circuitry has kicked in, and the victim is terrified and overwhelmed. Thoughts are driven by the perpetrator’s actions.

Behaviors are controlled by emotional reflexes and sometimes partly by habitual responses to aggression and domination first developed in childhood.

Show Visual 4-32.

Introduce the activity.

Instructor Note:

Suggested responses are included in Instructor Worksheet 4.1, Response Scenario Case Studies—With Answers, in the Instructor Manual.

Activity: Response Scenarios (15 minutes)

2. Tell them to work in their table groups to answer the questions.

3. Allow groups about 10 minutes to write their answers.

4. Have each group briefly report out to the larger group.

5. Debrief the activity by paraphrasing:

 - In each of the three scenarios, victims experienced a different kind of response to the assault. Bella froze—a common response to a frightening situation. Kevin and Gabrielle, however, experienced more drastic reflexes.

 - Would knowing how the victims responded during the assaults affect your interaction with them in any way? If so, how?
4. Roles of Brain Circuitries in Trauma, Memory, and Healing
(30 minutes)

Show Visual 4-33.

The Brain During Trauma

Paraphrase:

What happens to memory during a traumatic situation? Why are some sexual assault victims unable to recall what happened, or why do they remember some things and not others?

During trauma, the brain releases high amounts of stress chemicals. The amygdala is also very active, so there is strong encoding of emotional and sensory memories. The prefrontal cortex is impaired, including the language production area (Joels et al. 2012).

Show Visual 4-34.

Hippocampus Function Altered

Paraphrase:

The function of the hippocampus also is altered, resulting in the following effects (Joels et al. 2012):

- The context of the assault and the elements of the event are poorly woven into a whole.
- The sequence of events is poorly encoded.
- Emotional memories, however, are well encoded, especially for experiences surrounding the onset of fear/terror (e.g., when the victim realized she or he was being or going to be sexually assaulted).

Show Visual 4-35.

Attention, Trauma, and Memory

Paraphrase:

What we pay attention to largely determines what gets encoded into memory.

During states of intense fear and distress, in which the prefrontal cortex is impaired and attention is determined by the fear circuitry, “bottom-up” attention latches onto specific stimuli.
When this happens, there is much less encoding of more complex contextual information, such as how objects are arrayed in a room, or how events are sequenced over time (Joels et al. 2012). Knowing this can help advocates and victims understand why assault memories are often fragmented and missing information about how a room was configured or the exact sequence in which things occurred.

Even though the victim and others (including investigators, attorneys, judges, and juries) may believe the victim “would have to” remember how certain things were arrayed in space and time, the victim simply was not noticing or encoding such information in the midst of a traumatic assault.

Show Visual 4-36.

What Gets Encoded Into Memory

Paraphrase:

For all the reasons we have covered, memories of sexual assault tend to be fragmentary images, sounds, and body and other sensations, as well as strong emotions like disgust and horror.

Traumatic memories have few peripheral details (because those were things given little attention or memory encoding resources), little or no time-sequence information, and little or no words or narrative, especially soon after the trauma and early in recovery.

Exactly how are traumatic memories encoded? How does the brain affect the kinds of memories assault victims have later, including when meeting with investigators and prosecutors and testifying in court?

Remember, during a sexual assault the fear circuitry takes control of the brain’s response. The fear circuitry impairs the prefrontal cortex and releases stress hormones that impact the body and brain.

Show Visual 4-37.

Paraphrase:

The combination of fear circuitry control and prefrontal cortex impairment leads to bottom-up attention, i.e., attention that is automatically captured or focused on those aspects of the experience that the fear circuitry perceives as dangerous, threatening, or essential to survival and coping.

Show Visual 4-38.
Paraphrase:

Fear circuitry and the stress hormones change the way the hippocampus functions. Importantly, the hippocampus is a key structure for encoding memories. It weaves together details and contextual and time information.

During a traumatic experience, the hippocampus is altered in ways that decrease the encoding of most of what is happening, especially contextual and time information (Schwabe et al. 2012; Joels et al. 2012).

Show Visual 4-39.

Paraphrase:

The focus on danger from bottom-up attention and the altered hippocampus cause the victim’s memories to be fragmentary.

The memories that are retrieved can be unpredictable, incomplete, and disorganized.

However, some aspects are often recalled accurately, such as the onset of fear, central details, survival reflexes, and other “islands of memory” (Schwabe et al. 2012; Joels et al. 2012).

Show Visual 4-40.

“Islands of Memory”

Paraphrase:

In these “islands of memory,” the micro-islands contain fragmentary sensations, and the larger islands contain key periods of memory during the assault. These key periods include when fear kicks in, typically right before, during, and after the onset of the assault.

For that initial phase, contextual and time-sequence information may be very well encoded (sometimes even especially so, if it seemed like everything was happening in slow motion).

These islands also contain memories that were part of the survival reflexes—freezing, dissociation, tonic immobility, and collapsed immobility—or the shift from one reflexive state into another one; for example, moving from dissociation into collapsed immobility just before becoming dizzy or passing out.

Show Visual 4-41.
Alcohol, Drugs, and Memory

Paraphrase:

In addition to the assault itself, alcohol and drug use can affect an assault victim’s memory.

A low to moderate dose or level of intoxication impairs the ability of the victim to encode the context of the situation, but it does not impair the victim’s coding of sensation.

A high dose or level of intoxication impairs both context and sensations, and in a severe blackout, no information is encoded at all. The victim remembers nothing (Bisby et al. 2009, Bisby et al. 2010).

Show Visual 4-42.

Remembering the Experience

Paraphrase:

The state of the brain at the time of remembering affects which encoded aspects of the memory will be retrieved.

For example, if a victim feels unsafe and judged by a police investigator who doesn’t understand the impacts of sexual assault and doesn’t believe the victim, then he or she may not be able to use their prefrontal cortex to understand questions and retrieve the memories the investigator wants.

On the other hand, if the victim is feeling traumatized by remembering and/or by the investigator, this may trigger the automatic retrieval, in a bottom-up way, of fragmentary sensations and emotions that are nearly as intense as the assault itself.

Even under the best of conditions, someone who has been assaulted is likely to have a hard time putting the fragments that they can remember into words, let alone into a coherent story.

Show Visual 4-43.

Paraphrase:

To make things even more complex, someone may remember in a dissociated way—which can be how they experienced the original trauma, or a response to remembering it this time—and that involves its own impairments and problems.

For example, the more dissociated someone is, the less activated their embodiment circuitry tends to be, and the less the memory feels real, true, or valid to them.

This also can be contagious: if someone is talking about a terrible trauma but it sounds like they are reading a grocery list, it can cause the listener—including a victim advocate, police
investigator, prosecutor, judge, or jury member—to doubt the reality of what happened and the credibility of the victim.

In short, the state of the brain during remembering is going to powerfully shape the remembering experience, and this can have very significant consequences—especially if people involved do not understand that these are normal experiences and behaviors caused by how the brain responds to trauma.

Show Visual 4-44.

Life as a Minefield of Potential Trauma Triggers

Paraphrase:

Because the language areas of the brain are impaired or shut down during trauma, the memory may have few words, or no narrative or “story” associated with it—at least at first, before the victim begins healing from the trauma and is able to add words and tell it as a story, however incomplete.

Traumatic memories are often associated with powerful emotions with little or no language. Therefore, when victims of sexual assault try to remember the trauma, they often have trouble; however, those memories can pop up later, when they do not expect them or want them.

Also, because of the associative nature of memory and the strength of associations made during a trauma, all kinds of things can get linked to the trauma.

Thick eyebrows like the perpetrator’s, an angry or threatening tone of voice, maybe walls the color of those in the room where the assault took place—all can trigger remembering, including the emotional reflexes linked to it.

In short, life can become a minefield of potential trauma memory triggers.

Show Visual 4-45.

A Better Understanding

Paraphrase:

When you have some knowledge about just how profoundly neurobiology contributes to a victim’s trauma, you’ll have a much better understanding of why victims of sexual assault respond the way they do—why their memories are fragmented or incomplete, why they may have appeared to “cooperate” during the assault, or why other behaviors that might at first seem to “make no sense” are actually normal (or at least not rare) brain-based responses.

You will understand why victims need to feel safe talking about such experiences and to be understood as having responses and memories that totally make sense.
Your empathy for the victims will empower them. Victims that feel safe are more cooperative, more able to remember, and more willing to report.

Your deeper understanding of the experiences of victims will also make it easier for you to determine the victims’ physical and psychological needs, and to assist them in court and in meetings with the prosecutor if they do choose to report.

Remember: No matter how the victim responds, it is a normal reaction to an abnormal event.

Show Visual 4-46

Introduce the activity.

Activity: How Would You Respond? (15 minutes)

1. Ask participants to work in their table groups.

2. Refer to Worksheet 4.2, How Would You Respond?, in the Participant Manual. Ask them to read the worksheet, and answer the questions.

Instructor Note:

If time does not allow all groups to answer all questions, assign one or two questions to each group.

3. Allow groups about 15 minutes to write their answers.

4. Have each group report out to the larger group.

Debrief by paraphrasing:

Victims may not be interested in discussing the neurobiological aspects of trauma. They may simply want you to provide them with care and/or practical services. If this is the case, do not discuss this information.

Refer to Appendix C, The Neurobiology of Trauma Responses, in the Participant Manual. This document lists acceptable possible responses for the questions in the activity.

Refer to Appendix D, Applying the Neurobiology of Trauma to Your Work: Steps for Working With Victims, in the Participant Manual. This document gives some practical guidance and additional things to say when working with victims of sexual assault.

Refer to Appendix E, Additional Resources, in the Participant Manual. This document provides resources related to this training.
Show Visual 4-47.

Review the learning objectives and ask whether these were met.

By the end of this module, participants will be able to:

- Describe the components of the brain related to trauma.
- Explain common ways the brain is affected during and after sexual assault.
- Recognize common ways a traumatic experience may affect a victim’s behavior.
- Assist victims in understanding the neurobiology of trauma, when appropriate.

Show Visual 4-48.

Ask if there are any final questions or comments before moving to the next module.
Module 4
The Neurobiology of Trauma and Sexual Assault

Learning Objectives

- Describe the basic components of the brain related to trauma.
- Explain common ways the brain is affected during and after sexual assault.
- Recognize common ways a traumatic experience may affect a victim’s behavior.
- Assist victims in understanding the neurobiology of trauma, when appropriate.

The Brain...
Disclaimer

Please note that some mental health professionals, agencies, or entities may or may not agree with models of the neurobiology of trauma, as scientific knowledge, models, and theories are rarely unanimously accepted.

Module Overview

- The brain and its basic functions.
- The prefrontal cortex of the brain.
- Key circuitries in the brain affected by trauma.
- Emotional and brain responses when confronted with a traumatic situation.
- Traumatic events and memory.
- How knowledge of neurobiology can assist crime victims.

The Brain’s Basic Functions

- Brain stem.
- Medulla oblongata.
- Pons.
- Midbrain.
The Limbic System

A complex set of structures that lies on both sides of the thalamus, just under the cerebrum, which includes the:

- Amygdala.
- Thalamus.
- Hypothalamus.
- Hippocampus.

The Cerebellum and Cerebrum

- The cerebellum:
 - Associated with regulation and coordination of movement, posture, balance.
- The cerebrum:
 - Associated with reasoning, movement, and visual processing.

The Prefrontal Cortex
The Prefrontal Cortex

- Holds thoughts and memories in mind.
- Helps us manage emotions and reflect on behavior.
- Helps manage other brain regions.
- Allows us to focus our attention where we choose, and do what we choose, consistent with our goals and values.
- Becomes impaired in traumatic situations.

Fear Circuitry

- Plays a huge role in trauma and posttraumatic stress.
- Located in multiple brain areas.
- Operates automatically and mostly outside awareness.

Seeking Circuitry

- Seeks escape from fear, anxiety, sadness, and any unwanted experiences.
- May be "quick fixes" that don't solve the problem and may lead to addiction.
- Also enables victims to seek to uphold their values.
Satisfaction Circuitry

- Produces feeling of satisfaction when we get what we seek.
- Central to feeling safe, soothed, and connected to others.
- Produces opioids involved in feelings of satisfaction, connection, etc.

Embodiment Circuitry

- Includes the insular cortex (insula).
- Receives sensory data from all body systems.
- Key to healing from trauma.
- Allows us to know what it feels like to be in our body.

Traumatic Situations: Amygdala Control

In Traumatic (and High-Stress) Situations…

- Loss of prefrontal regulation: Chemicals from the brain stem impair (and may shut down) the prefrontal cortex.
- Bottom-up attention: Attention is automatically captured by anything perceived as dangerous or threatening, or as necessary for survival.
- Emotional reflexes: Reflexes are automatic and include freeze, flight, or fight responses, as well as bodily responses like your heart pounding quickly.

The Amygdala and Attention

Survival Reflexes in the Body

- Pupils dilate.
- Heart beats faster.
- Blood pressure increases.
- Blood flow to muscles increases.
- Breathing rate increases.
“Fight or Flight” is Misleading

- Our brains are not wired this way.
- We evolved to freeze first, then flee.
- Fighting is only in the service of fleeing, unless there is no other option.
- It’s important that assault victims understand this, because many will be ashamed that they did not fight back.

Freeze, Flight, or Fight—Primary Purpose

- Freeze:
 - Brief response, when danger is perceived.
 - Highly alert.
 - Not moving.
 - Ready to suddenly burst into action.

Drastic Survival Reflexes

- Occur when escape is—or appears—impossible.
- Attempting to escape and survive when there is no (physical) escape.
- Automatic survival reflexes.
Disassociation—Drastic Survival Reflex

“It was silence, looking at her through a glass wall, so it couldn’t affect me, couldn’t touch me.”

Disassociation—Drastic Survival Reflex

- Victim feels:
 - “Spaced out.”
 - “Disconnected.”
 - “On autopilot.”
- These are common responses to sexual abuse in children, although it can happen to anyone.

Disassociation—Drastic Survival Reflex

Explain to victims that these are brain-based, automatic survival reflexes.
Tonic Immobility—Drastic Survival Reflex

- Freezing = Alert and immobile, but able to move.
- Tonic immobility = Paralysis, can’t move or speak.
- Caused by extreme fear, physical contact with perpetrator, restraint, perception of inescapability.
- An estimated 10–50 percent of victims experience tonic immobility.

Sudden onset and termination.
- Lasts from seconds to hours.
- Does not impair alertness or memory.

Can overlap with disassociation and may include:
- Trembling or shaking.
- Rigid muscles.
- Feeling of cold.
- Numbness to pain.
- Unfocused staring or intermittent eye closure.
Collapsed Immobility—Drastic Survival Reflex

Heart gets massive parasympathetic input, resulting in:
- Extreme decreases in heart rate and blood pressure.
- Faintness, “sleepiness,” or loss of consciousness.
- Loss of muscle tone.

Collapsed Immobility—Drastic Survival Reflex (continued)

- Often accompanies mental defeat.
- Can be triggered by seeing blood, a skin puncture, or a knife.
- More likely in women.
- Can be a source of shame in victims.
- These are normal, brain-based responses.

(Kozłowska et al. 2015; Baldwin 2013)

Brain-Based “Counter-Intuitive Behaviors”

- Did not resist.
- No attempt to escape.
- Did not scream.
- “Active participant.”
Brains During Most Sexual Assaults

Perpetrator
- Not stressed.
- Prefrontal cortex in control.
- Thinking and behavior:
 - Planned.
 - Practiced.
 - Habitual.

Victim
- Terrified, overwhelmed.
- Fear circuitry in control.
- Attention and thoughts driven by perpetrator actions.
- Behavior controlled by emotional reflexes and habits from childhood (including abuse).

Activity

- Work in groups.
- Review the case studies and answer the questions.
- Report out to the large group.

The Brain During Trauma

- Brain releases high amounts of stress chemicals.
- High amygdala activity.
- Strong encoding of emotional and sensory memories.
- Prefrontal cortex is impaired, including language protection area.
Hippocampus Function Altered

- Context of assault and elements of event are poorly woven into a whole.
- Sequence of events is poorly encoded.

However...

- Emotional memories are well encoded, especially for experiences surrounding the onset of fear/terror.

Attention, Trauma, and Memory

- Mostly bottom-up attention.
- Fear circuitry focused on what seems most important to survival and coping.
- Central details are encoded.
- Stimulus information is encoded much more than contextual information.

What Gets Encoded Into Memory

- Fragments of experience are “burned in.”
- “Islands of memory.”
- Few peripheral details.
- Little or no time-sequence information.
- Little or no words or narrative.
Fear circuitry in control.

Impaired prefrontal cortex.

Increased stress hormones.

(Schwabe et al. 2012; Joels et al. 2012)

What Gets Encoded Into Memory

Increased stress hormones. → Altered hippocampus functioning.

Fear circuitry in control. → Bottom-up attention.

Impaired prefrontal cortex.

Retrieved memories can be unpredictable, incomplete, disorganized.

Some aspects CAN be recalled accurately: Fear onset, central details, survival reflexes and other "islands of memory."

(Schwabe et al. 2012; Joels et al. 2012)
“Islands of Memory”
- Micro-islands—Fragmentary sensations.
- Larger islands—Key periods within assault.
 - When fear kicked in, right before and after.
- Survival reflexes—Indicators of nonconsent:
 - Freezing.
 - Disassociation.
 - Tonic immobility.
 - Collapsed immobility.

Alcohol, Drugs, and Memory
- Low to moderate dose/intoxication:
 - Impairs context encoding (hippocampus).
 - Does not impair encoding of sensations.
 - Resembles effect of fear/trauma.
- High dose/intoxication:
 - Impairs hippocampus-mediated encoding and consolidation of both context and sensations.
 - In a severe “black out,” nothing gets encoded.

Remembering the Experience
- The state of the brain when trying to remember affects what can be retrieved and put into words.
- If victims feel unsafe when questioned, they may not be able to use their prefrontal cortex to understand the questions and retrieve certain memories.
- If victims feel traumatized by questioning, this may trigger the bottom-up retrieval of fragmentary sensations and emotions that are nearly as intense as the assault itself.
Remembering the Experience

- Remember: The survivor may have been dissociated at the time of the assault, and when they remember it later.
- Or the survivor can alternate between dissociated and emotionally upset remembrances: for example, from one meeting or investigative interview to the next.

Life as a Minefield of Potential Trauma Triggers

A Better Understanding

"I'm going to help this victim feel safe, in control, competent, and cared for."

Victim advocate provides better support for victim in court and during meetings with prosecutors.

Empathy for victim, empowerment of victim.

Victim advocate more easily determines victims' physical and psychological needs.

Victim feels safer, is more cooperative, more able to remember, more willing to report.
Activity

How Would You Respond?
Worksheet 4.2

- Work in groups.
- Review the case studies and answer the questions.
- Report out to the large group.

Review of Learning Objectives

- Describe the basic components of the brain related to trauma.
- Explain common ways the brain is affected during and after sexual assault.
- Recognize common ways a traumatic experience may affect a victim’s behavior.
- Assist victims in understanding the neurobiology of trauma, when appropriate.

End of Module 4

Questions? Comments?